
1 Quantization noise

The process of quantisation is happening all around us all the time. Whenever
we use the in-built microphone or camera in our phone or laptop, for example,
we are utilizing quantisation to bring real-world, continuously-varying sounds
and images in to the discrete-time, discrete-amplitude domain. The measure-
ment transducers in the closed-loop feedback systems that are the mainstay
of the process industry, similarly, capture continuously-varying signals using a
sample+hold and quantising process.
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Figure 1: Analog-to-digital converter (including quantizer)

Denote the input to our quantiser as x[n].
Figure 2 offers an intuitive picture of what happens during the quantisation

process.
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Figure 2: Quantization of continuous-varying signal

Two quantities are important in our analysis here. The first is the quanti-
sation level, Q, given by

Q =
R

2b
. (1)

The second is the variance, or power, in the quantisation error signal. If the
original signal meets certain criteria, it is reasonable to assume that the quanti-
sation error is uniformly distributed between −Q and Q. This leads to Equation
2.

σ2
e =

Q2

12
(2)
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where σe, according to standard notation, denotes the standard deviation in the
error signal. Qualitatively, Equation 1 simply indicates that the quantisation
level is proportional to the range, R, and inversely proportional to the number
of discrete levels.

We don’t need to take this statement on faith, of course. We can compute
the actual variance of our error signal with MATLAB. In this case, we will use
a normally-distributed random signal with a mean of zero and variance of one. �
% Generate a normally−d i s t r i b u t e d ( pseudo−)random s i g na l
% with zero mean and var iance one .
x = randn( s ize (n) ) ;

This is an approximation of white noise, and so meets the criteria necessary for
Equation 2 to be valid. We then quantise this signal and subtract to get the
quantisation error. �
xq = round( x∗2ˆ(b−1) ) / 2ˆ(b−1) ;
% What i s the ac tua l error ?
e = xq − x ;
var ( e )

The result is σ2
e = .0052117, as expected.

Sinusoidal inputs Let us try again, but using a sinusoidal input signal. �
f = 7 ;
x = cos (2∗pi∗ f ∗n/N) ;

In this case, the quantisation error is not uniformly distributed between −Q
2

and Q
2 , as the histogram in Figure 3. Equation 2 rests on the assumption that

the quantisation error is uniformly distributed across this range, so we can not
expect the equation to be valid in this case. Indeed, it is not. The variance, in
this case, is

σ2
e = .004594

. �
% Ti t l e : D i s t r i b u t i on and var iance o f quan t i s a t i on noise
% Author : David Co l l i n s

N = 2ˆ14 ; % no . o f samples
n = 0 :N−1;
% No. o f b i t s
b = 3 ;

% Generate a normally−d i s t r i b u t e d ( pseudo−)random s i g na l
% with zero mean and var iance one .
x = randn( s ize (n) ) ;

% Quantise the se va lue s .
% Note t ha t we are rounding down in t h i s case .
%xq = f l o o r ( x ∗2ˆ(b−1)) / 2ˆ(b−1) ;
% We could , a l t e r n a t i v e l y , round i t to the neares t number .
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xq = round( x∗2ˆ(b−1) ) / 2ˆ(b−1) ;

% What i s the ac tua l error ?
e = xq − x ;

% We expec t the var iance to be approximate ly equa l to Qˆ2 / 12
% (where Q i s the quan t i s a t i on l e v e l ) .
Q = 1 / 2ˆ(b−1)
Qˆ2 / 12

var ( e )

%plotAnnotat ion1 = s p r i n t f ( ’ $\ sigma e ˆ2$ = %.2 f ’ , var ( e ) ) ;

% Compare the quant i sed s i g n a l with the o r i g i n a l ( over a ce r t a in
% range o f samples at l e a s t )
rng = 128 : 196 ;
subplot ( 2 , 1 , 1 ) ;
plot ( x ( rng ) , ’ r ’ ) ;
hold on ;
stem( xq ( rng ) , ’ bo ’ ) ;
grid ( ) ;
xlabel ( ’ Sample number ’ ) ;
ylabel ( ’Magnitude ’ ) ;
t i t l e ( ’ Normally−d i s t r i b u t e d random s i g n a l − o r i g i n a l and quant i sed

v e r s i on s ’ ) ;
% Let ’ s p l o t the error i t s e l f − to ge t a sense o f i t s
% time−domain c h a r a c t e r i s t i c s .
subplot ( 2 , 1 , 2 ) ;
plot ( e ) ;
grid ( ) ;
xlabel ( ’ Sample number ’ ) ;
ylabel ( ’Magnitude ’ ) ;
t i t l e ( ’ Quant i sat ion e r r o r ’ ) ;
pause ( ) ;

print −dpdf ’ quantNoise1 . pdf ’ ;

% Lets p l o t a histogram of the error a l s o .
c l f ( ) ;
hist ( e ) ;

print −dpdf ’ quantNoise1−histogram . pdf ’ ;

A = [ n ’ x ’ xq ’ e ’ ] ;
rows = 13 : 1 00 ;
csvwrite ( ’ quantNoise . csv ’ , A( rows , : ) ) ;

save ( ’ quant i sedInput .mat ’ , ’ xq ’ , ’ x ’ ) ;

1.1 Variance of filter output

What happens if we pass this quantised signal through a filter? Lets examine
what happens by constructing a low-pass filter and passing our quantised signal
through it. We will determine the error in the output signal (Figure 5) according
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to
eo[n] = yq[n]− y[n].

It can be shown, then, that the variance of the error in the output is given
by

σ2
o = σ2

e

∞∑
n=0

|h[n]|2 . (3)

We already know σ2
e , but

∑∞
n=0 |h[n]|2 depends on the particular filter. When

we design a filter we may be working with the b and a coefficients rather than the
impulse response, h. We can determine the impulse response using MATLAB’s
impz(b,a) function, however. This is demonstrated below (Listing 1).

Listing 1: Quantised signals and filtering. What is the variance of the error in
the output? �
% F i l t e r to examine the e f f e c t s o f quan t i z a t i on noise
% in d i s c r e t e systems .
% Author : David Co l l i n s

% Load quant i sed input s i g n a l
load ( ’ quant i sedInput . mat ’ ) ;

% Low−pass f i l t e r with cut−o f f f requency at 2/5 p i radians / sample
wp = 2/5 ; % pass−band edge frequency
ws = 3/5 ; % stop−band edge frequency
Rp = . 1 ; % amount o f r i p p l e in pass−band
Rs = 30 ; % degree o f a t t enua t i on in stop−band

[ order ,wp ] = e l l i p o r d (wp, ws , Rp, Rs) ;

[ b , a ] = e l l i p ( order , Rp, Rs , wp) ;

printf ( ’ F i l t e r order i s %d\n ’ , order ) ;

% What i s the impulse response o f our f i l t e r ?
h = impz (b , a ) ;

% Sum of the square o f the e lements o f the impulse response
h∗h ’

% What i s the output o f the f i l t e r when we pass the quant i sed input
through i t ?

yq = f i l t e r (b , a , xq ) ;
y = f i l t e r (b , a , x ) ;

e = yq − y ;

% Determine the var iance o f the s i g n a l
var ( e )
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Figure 3: Distribution of quantisation error for a sinusoidal input signal
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Figure 4: Quantization error analysis in MATLAB
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Figure 5: Passing the quantised signal through a filter
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