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2 THEORY

1 Introduction

1.1 Criteria for Circuit Analysis

This project entails the use signal processing techniques
to analyise the current, voltage and sampling frequency
of three different electrical appliances, namely a charger,
a monitor and computer rack. Using Matlab we were re-
quired develop a function which would automatically de-
tect what appliance was in use when given only the current
and voltage waveforms of each appliance, the waveforms
were captured at a frequency of 8kHz. It was also required
that our function be able to detect an unknown appliance
in conjunction with the three existing appliances. The
power analysis system we devised must also be able to de-
tect if two appliances are running at the same time and
determine which two they are. We were not provided with
data for the case of two appliances running simultaneously
and had to synthesise our own data using electrical circuit
theory. A number of assumptions were taken in the ap-
proach we took to solve this task. First we assumed the
appliances were supplied by mains voltage which would
mean the the voltage was 230V A.C supplied at 50Hz. We
also assummed the appliances to be in parallel when more
than there was more than one in operation. It is also im-
portant to note that the voltage and current waveforms
given to us for this project was training data only. Hence
the function we devised is able to deal with new data sig-
nals that vary slightly from the training data. Chapter
two of the report deals with the theory and rational of the
approach we took to obtaining a functioning power system
analysis tool. Chapter three outlines how we implemented
this theory using MATLAB. In chapter four we examine
the testing of our system and in particular the design for
testing the script. Chapter five takes a look at the results
obtained from the project. Finally the report is concluded
in chapter six with a summary of the project undertaken
and also includeds application scope and performance is-
sues.

1.2 Background

1.2.1 Energy efficiency

In todays economic climate every business and indeed most
individuals worldwide are looking at measures that can be
taken to reduce costs. One particular area in which people
are looking to save costs is their use of electricity. Reduc-
ing costs and increasing efficiency has become a major fac-
tor when talking about power consumption. Digital signal
processing is a very useful tool that can be used to analyse
power systems and hence help us achieve our cost saving
goals.

The system we have designed allows us to analyse our
electricity consumption behaviour and could be used as
tool in reducing costs, reducing energy usage and increas-

ing efficiency. Although the function written is only robust
to a certain extent the principal can be taken and used in
many different applications.

1.2.2 Digital Signal Processing in context

With analog electronics fast becoming dated technology
more and more people are turning towards the digital age
and hence DSP applications are increasing. Digital signal
processors are now widely available and cost effective so it
is fair to say DSP will continue to affect engineering design
in our modern daily life and can be used for many different
applications. This project examines one such application,
power system analysis.

Digital Signal Processing in Power System Protection
and Control is a book written by Rebizant, Szafran and
Wisniewsk in which they bridge the gap between the the-
ory of protection and control and the practical applications
of protection equipment. One particular section of the
book is of importance and relevant to this project, namely
section 3.2.3 Digital Signal Processing. In this section they
describe how the protection of a plant or equipment can be
implemented using DSP, The protection operation related
to determination of the state of the protected plant (faulty
or healthy) and issuing the final decision is based on dig-
ital processing of sampled input signals, with the aim of
respective criteria values[1]. One can see that this project
has similarities with the application described above and
with development could be used in the same manner for
the protection of the appliances in use at any given time.

Another existing technology which has significant rele-
vance to this project of power system analysis using DSP
is the area of smart metering. Smart meters are the next
generation of electricity meters that allow for remote me-
ter reading, real time pricing and remote operation. The
ESBi state that they are simply intelligent two-way com-
munications devices with digital real time power measure-
ment. The principal of our project and the smart meters
are similar in the way they digitally process a current and
voltage signal and record measurements of the signals.

2 Theory

2.1 AC circuit theory

A simplified circuit diagram is shown in Figure 1. Note
the currents indicated are functions of time. If only the
rack is connected, Kirchoff’s Current Law informs us that
the total current will simply be equal to the rack current:

itotal(t) = i1(t)

, or
itotal(t) − i1(t) = 0

Rory Bateman, David Collins 4 DSP 2



2.4 Other methods 2 THEORY

220V approx.50Hz

itotal(t)

i3(t)

Monitor

i2(t)

Charger

i1(t)

Rack

Figure 1: Circuit diagram

. Similarly, if both the rack and the charger are connected,
then we expect that

itotal(t) − i1(t) − i2(t) = 0

. This elementary observation seems to suggest an easy
way to test for appliances: take the current signal you
have been provided, subtract the current signals belonging
to known appliances and see if the results is equal to zero!

Unfortunately, however, it’s not quite that simple. The
difficulty arises because we are considering the signals in
the time domain and unless the signals are perfectly ’aligned’
in time, they won’t cancel!

NB: Our method is based essentially on Kirchoff’s Cur-
rent Law.

2.2 Time-domain vs. Frequency-domain
representations

So far we have considered the signals in the time-domain.
Due to the linearity of the Fourier Transform, the sum of
the Fourier transform of two signals is equal to the Fourier
transform of the sum. Thus, if

itotal(t) = i1(t) − i2(t) (1)

, then
Itotal(ω) − I1(ω) − I2(ω) ≈ 0

. This allows us to test for the presence of certain ap-
pliances using the same method we had considered in the
time-domain. For example, if the rack and charger are
connected, we expect that

Itotal(ω) − I1(ω) − I2(ω) ≈ 0.

.

2.3 Statistical measures

There will always be some variation in our run-time data.
The current drawn by our appliances tomorrow, for exam-
ple, will not be precisely the same as it is today. Thus

we need to resort to statistical measures when trying to
‘match’ our signal data. Three such measures which will
be useful for our purposes are the mean,

x̄ =
1

N

N∑
i=0

x[n],

variance,

Var(x) =
1

N − 1

N∑
i=0

(x[n] − x̄)2,

and standard deviation — which is just the square root of
the variance:

σ =
√

Var(x) =

{
1

N − 1

N∑
i=0

(x[n] − x̄)2

} 1
2

Qualitatively, the mean corresponds to the intuitive notion
of ‘average’, while variance is a measure of the ‘spread’ in
a sequence of values.

These measures can perhaps best be understood by
looking at the probability distribution of the sequence (Fig-
ure 4).

2.4 Other methods

There are a multiple ways in which this problemt can
solved. In an effort to achieve our goal of obtaing a func-
tioning power system analysis tool we looked at a number
of different methods. One such method was the use of
corrolation and autocorrelation, another was to obtain the
impeadance and use that data to solve the task. Another
option considered was to obtain the real power in each ap-
pliance and use circuit theory. The final method taken into
consideration was to examine the power spectrum of each
signal. All of these methods and reasons for going against
them are outlined in the appendix (Section B).
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Figure 2: A glance at the currents in the time-domain

3 Implementation

There were a number of potential pitfalls when trying to
implement a solution to this problem. These include:

• variations in sampling rate,
• variations in signal length, and
• variations in signal phase.

To allow for different sampling rates, we used MAT-
LAB’s resample() function. �
i f ( sampl ing ra te ˜= o r i g i n a l s amp l i n g r a t e )

cur rent = resample ( current ,
o r i g i n a l s amp l i n g r a t e , sampl ing ra te
) ;

end

3.1 Time-shifting

We employed a MATLAB function to compensate for the
phase shift in signals. The method we employed to do this
can be summarised as follows:

1. Find the maximum value in a single period of the
voltage;

2. Iterate sample-by-sample over a single cycle of the
voltage to find the first sample close to this magni-
tude; and

3. circularly shift both the voltage and current by this
number of samples.

Thus, the main body of the helper function is as follows: �
for n=range

i f ( s i g n a l s t r u c t . vo l t age (n) > (maxVal−
t o l ) )

nSh i f t = n−s amp l e o f f s e t ;
break ;

Rory Bateman, David Collins 6 DSP 2
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Figure 3: When similar signals are subtracted from each
other the result is ‘close’ (but not equal) to zero.
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Figure 4: Probability distribution and statistical measures

end
end

The full code, which provides a clearer indication of vari-
able meanings, can be found in Listing 3.

This is called in our main application in the manner
shown. �
% 2. Compensate f o r phase o f f s e t s .
app l i ance = c o r r e c t p h a s e s h i f t ( appl iance ,

s amp l e s i n a pe r i od ) ;

3.2 Variation in run-time data

The current and voltage data retrieved during the running
of the application will never match data of the known ap-
pliances exactly. Even if the phases of the voltages are
aligned correctly, there will always be some sort of varia-
tion.

Consequently, when we test for the presence of appli-
ances using an equation such as Equation 1, we can never
expect the result to be exactly zero — even when the ap-
pliance connected is the one we are testing for. What we
need to test for, really, is the degree of ‘closeness’ to zero.
More specifically, we expect two things when we subtract
two signals which are almost exactly equal:

1. the average should be very close to zero; and
2. the deviation of the result from its average (i.e. zero)

should be almost negligible.

Two statistical measures that test for these characteristics
are the ‘mean’ and the ‘standard deviation’. They are
employed in our application as follows.

Firstly, we subtract our known currents from the cur-
rent data in our run-time application — storing the result
in a matrix. (Using a matrix simply allows us to perform
multiple statistical tests on multiple signals. The same
thing could be accomplished using row or column vectors
— it would just be more awkward.) �
% 1. Compare with monitor
cu r r e n tD i f f ( : , 1 ) = app l i ance . cur r ent − monitor .

cur r ent ;
% 2. Compare with rack
cu r r e n tD i f f ( : , 2 ) = app l i ance . cur r ent − rack .

cur r ent ;

Then we extract various statistics. �
cu r r en tD i f f S td = std ( c u r r e n tD i f f )
cur r entDi f fVar = var ( cu r r e n tD i f f )
currentDif fMean = mean( c u r r e n tD i f f )

3.3 Application output

In order for our application to be useful to working engi-
neers, or even just domestic users, the output of our ap-
plication needs to be reasonably ‘user-friendly’. Although
our main appliance\ detect() function returns only the num-
ber corresponding to an appliance (or combination of ap-
pliances), our MATLAB test-script maps this number to
a more meaningful message. This is done using a simple
switch() statement which tests for different cases (Listing
1).

The message can then be printed to the user’s screen
using a command such as �
msg = s t r c a t ( ’ Connected app l i ance ( s ) : ’ ,

app l i anc eDes c r i p t i on ) ;
disp (msg) ;

The code of our actual ‘appliance detect’ function is
shown in Listing 4. As can be seen, the function takes
three arguments.

Rory Bateman, David Collins 7 DSP 2
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Listing 1: Generating user-friendly application output �
% Run the ac tua l app l iance de t e c t i on func t i on .
app l i ance no = app l i an c e d e t e c t ( current , vo l tage , new sampl ing rate ) ;

% Then map numbers to app l i ances .
switch ( app l i ance no )

case {1}
app l i anc eDes c r i p t i on = ’ monitor ’ ;

case {2}
app l i anc eDes c r i p t i on = ’ rack ’ ;

case {3}
app l i anc eDes c r i p t i on = ’ charger ’ ;

case {4}
app l i anc eDes c r i p t i on = ’ monitor and rack ’ ;

case {5}
app l i anc eDes c r i p t i on = ’ monitor and charger ’ ;

case {6}
app l i anc eDes c r i p t i on = ’ rack and charger ’ ;

end

3.4 Data structures

For passing arguments between functions, we chose to use
data structure in some cases. This structure had two ele-
ments — one for the current signal, and one for the voltage
signal. �
app l i ance . cur r ent = cur rent ;
app l i ance . vo l t age = vo l tage ;

This allowed us to perform operations — e.g. phase-shifts
— on appliance data by passing just a single argument
(rather than two) to the relevant function. Our correct phase shift

() function, for example, takes the afore-mentioned data
structure type as its first argument.

4 Testing

Writing an appropriate test script for our application re-
quires as much care as the design of the application itself,
in one sense. We wrote a dedicated MATLAB script for
testing our application. It has a number of important fea-
tures:

1. noise simulation the ability to add noise to our
synthesized signal;

2. phase offsets time-domain shifting of signals by an
arbitrary number of samples; and

3. sampling-rate conversion in case we want to sim-
ulate different sampling frequencies.

Boolean flags in our test script enabled the turning on an
off of these features (see Listing 5).

4.1 Noise simulation

Expecting our application to cope with arbitrarily large
noise signals and adding them indiscrimately is unrealis-

tic. While ensuring that our application can tolerate some
noise in the run-time data, we want to keep our ‘signal-to-
noise ratio’ reasonably high. We did this as follows:

• take the smaller of the amplitudes of the two currents
you are using as test data (remember we are synthe-
sizing current signals for our tests) — in the case of
only current signal just take whatever its amplitude
is;

• take some fraction of this — let this be the amplitude
of our noise signal;

• use the rand() or randn() MATLAB function to gen-
erate a random signal — ensuring it is the same
length as our current test signal; and

• simply add this random signal to our current signal. �
no i s eSca l i ngFac to r = min(max( cur rent1 ) ,max(

cur rent2 ) ) ;
noiseAmplitude = no i s eSca l i ngFac to r / 5 ;
cur r ent = cur rent + randn( length ( cur r ent ) ,1 ) ∗

noiseAmplitude ;

4.2 Phase offsets

To introduce a phase offset in the synthesized data, we
simply circularly-shifted it in the time-domain. �
i f ( phaseSh i f t )

nSh i f t = 23 ;
cur r ent = s h i f t ( current , nSh i f t ) ;
vo l t age = s h i f t ( vo l tage , nSh i f t ) ;

end

A complementary correct phase shift () routine compensates
for this in the actual running of the application (cf. Section
3.1).
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Listing 2: Sampling-rate conversion �
i f ( samplingRateConversion )

new sampl ing rate = 8e+3;
% I f we want to change the sampling ra t e ( even j u s t f o r t e s t i n g purposes )
% we w i l l need to ’ resample ’ .
i f ( sampl ing ra te != new sampl ing rate )

disp ( ’ Resampling . . . ’ ) ;
cu r r ent = resample ( current , new sampl ing rate , sampl ing ra te ) ;
vo l t age = resample ( vo l tage , new sampl ing rate , sampl ing ra te ) ;

end
sampl ing ra te = new sampl ing rate ;

end

4.3 Re-sampling

To make allowances for different sampling rates, we used
MATLAB’s built-in resample() function (Listing 2).

4.4 Speed

We are also interested in how long the detection algorithm
requires to return its results. To measure this we used
MATLAB’s built-in tic() and toc() functions. We insert
them in our test script as follows: �
t ic ( ) ;
app l i ance no = app l i an c e d e t e c t ( ) ;
e l apsed t ime = toc ( ) ;

This information might be useful for debugging purposes
(or even for the end-user), so let’s print it to the screen. �
printf ( ’ ( Appliance de t e c t i on a lgor i thm took %.5 f

seconds \n) ’ , e l ap sed t ime ) ;

5 Results

5.1 Pass/fail tests

The results of pass-fail tests for various scenarois — simu-
lating the connection of different appliances and different
signal-to-noise-ratios — are summarised in Table 1. As
is clear from the table, the results are satisfactory. The
algorithm detects the correct appliance for effectively all
realistic scenarios — excluding only those in which the
signal-to-noise ratio is unreasonably low.

5.2 Speed

On average, the actual detection algorithm (i.e. ignoring
the signal synthesis performed in the test-run scripts —
which wouldn’t be required in run-time) required approx.
28 milliseconds to return its results. The results of several
test-runs are shown in Table 2. This information is impor-
tant to consider, as a real-world application might have to
compute results for large amounts of data ‘on-the-fly’.

5.3 Output captures

The results of simulating the rack and charger being con-
nected are shown in Figure 5 — 7.

6 Summary

Using only simple circuit theory (e.g. Kirchoff’s Current
Law) and some basic statistical measures, we have man-
aged to devise a potentially useful signal processing appli-
cation.

6.1 Application scope

The appliances considered for this application are rela-
tively simple. Even though they are non-linear, their cur-
rent draw and power dissipation are largely predictable.
Many modern appliances could prove significantly more
challenging to identify. The current draw of appliances
such as DVD players, desktop PCs, and laptops, for ex-
ample, is highly unpredictable. Although not necessar-
ily impossible to accommodate in this sort of application,
their identification would almost certainly require methods
beyond those outlined in this report.

6.2 Performance issues

As noted in Section 4.4, our detection algorithm delivered
its results with reasonable speed. This was in a ‘labora-
tory’ scenario, however, and we need to bear in mind that
a real-world application might require faster speeds.

6.2.1 Real-time performance

An important consideration for an application such as this
is its ability (or inability) to perform in ’real-time’. If the
software is expected to detect certain appliances ’on the
fly’ rather than using historical data more attention will
need to be given to the efficiency of the algorithms used.
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Signal-to-noise ratio 5 4 3 2 1 .75 .5 .4 .3 .2
Monitor

Rack
Charger

Monitor + rack
Monitor + charger

Rack + charger

= pass, = fail

Table 1: Pass/fail tests for different scenarios

Run 1 2 3 4 5 6 7 8
Duration (ms) 27.90 27.89 27.69 27.82 27.99 27.78 27.71 28.03

Table 2: Speed tests

Figure 5: Results of simulating rack and charger being connected

Figure 6: Results of simulating monitor being connected

6.2.2 MATLAB vs. other programming languages

MATLAB is a useful development tool, and enables a pro-
grammer to test ideas easily and quickly. As it is an in-
terpreted rather than compiled language, however, it has
a serious drawback: programs written in MATLAB are
slow. For optimum performance, a developer will proba-
bly choose to write their program in C or C++. This has
the added advantage that users without MATLAB can run
the program also.
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Figure 7: Results of simulating charger and monitor being connected
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A MATLAB code

A.1 Phase-shift compensation algorithm

As mentioned previously, it is crucial that the phases of the appliance voltages are aligned in order for our method to
correctly. We tried two approaches to tackling this problem.

• Phase-shift compensation in the frequency domain This approach involved taking the Fourier Transform
of the voltage signal, finding the frequency bin corresponding to 50 Hz, and taking the angle of the corresponding
value. Ideally, this angle determines how much we need to ‘rotate’ or ‘shift’ our signals. Unfortunately, this
method proved unreliable in practice — working only approx. two out of every three times. This may be due to
the fact that the voltage signals were not perfect sinusoids.

• Phase-shift compensation in the time domain In this method we simply found the sample corresponding
to the maximum amplitude of the voltage signal within one cycle, and shifted the signal by this amount.

The code we used in the final implementation is shown in Listing 3.

Listing 3: Compensating for phase shift in MATLAB �
% Circular s h i f t waveforms to remove phase s h i f t ( with r e l a t i on to a cosine waveform) .

% This i s done as f o l l ows :
% 1. Find the maximum value of the s i gna l . This maximum can be found within a cer ta in period ;

then , as long as the s i gna l i s per iod ic ( with no exponent ia l decay or increase ) , the l o c a l maximum
should be approximately equal to the g l o ba l maximum.

% 2. I t e r a t e over the samples in a s i n g l e period , s topping as soon as you f ind one c lo se to
the maximum value .

% 3. The sample number at which you stopped i s the number of samples you need to s h i f t .
function new s i gna l s t r u c t = c o r r e c t p h a s e s h i f t ( s i g n a l s t r u c t , s amp l e s i n a pe r i od )

N = length ( s i g n a l s t r u c t . vo l tage ) ;
% Take a snapshot of the s i gna l s l i g h t l y o f f s e t from i t s beginning .
% This i s to a l low for s l i g h t per turba t ions in the f i r s t few samples .
% Make sure tha t the o f f s e t i s an in teger mu l t ip l e of the number of samples
% in a period .
s amp l e o f f s e t = samp l e s i n a pe r i od ∗2 ;
range = samp l e o f f s e t : s amp l e o f f s e t+samp l e s i n a pe r i od ;
% Find the max, min , and amplitude .
maxVal = max( s i g n a l s t r u c t . vo l tage ( range ) ) ;
minVal = min( s i g n a l s t r u c t . vo l tage ( range ) ) ;
amplitude = maxVal − minVal ;
% The to lerance we re f e r to when searching for a sample ’ c lose ’ to the
% maximum depends on two fac to r s :
% 1. the number of samples in a period , and
% 2. amplitude of the waveform .
ang l e pe r sample = 2∗pi / s amp l e s i n a pe r i od ;
t o l = amplitude ∗ (1−cos ( ang l e pe r sample ) ) ;
nSh i f t = 0 ;
for n=range

i f ( s i g n a l s t r u c t . vo l tage (n) > (maxVal−t o l ) )
nSh i f t = n−s amp l e o f f s e t ;
break ;

end
end
s i g n a l s t r u c t . vo l tage = s h i f t ( s i g n a l s t r u c t . vo l tage ,− nSh i f t ) ;
s i g n a l s t r u c t . cur rent = s h i f t ( s i g n a l s t r u c t . current ,− nSh i f t ) ;

n ew s i gna l s t r u c t = s i g n a l s t r u c t ;
end
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A.2 Detection algorithm

The code for our actual detection algorithm is presented in Listing 4.

Listing 4: Main ‘appliance detect’ function �
% Authors : Rory Bateman & David Co l l ins
% Date : October 28 2013
% Descript ion : This funct ion de t ec t s the presence of a par t i cu l a r appl iance on
% a mains AC c i r c u i t based on the three parameters provided ( current , vo l tage , and sampling−rate ) .
% Return value : The returned value i s an integer , which has the f o l l ow ing meaning :
% 0 − unknown
% 1 − monitor
% 2 − rack
% 3 − charger
% 4 − monitor + rack
% 5 − monitor + charger
% 6 − rack + charger

function app l i ance no = app l i an c e d e t e c t ( current , vo l tage , sampl ing ra te )
% Load known current s i gna l s ( time domain and frequency domain)
load ( ’ currentData .mat ’ ) ;
matchTol = . 0 7 ;

app l i ance . cur rent = current ;
app l i ance . vo l tage = vo l tage ;

o r i g i n a l s amp l i n g r a t e = 8e+3;
fundamenta l f r eq = 50 ;
o r i g i n a l s i g n a l l e n g t h = 2048 ;

s amp l e s i n a pe r i od = o r i g i n a l s amp l i n g r a t e / fundamenta l f r eq ;

app l i ance no = 0 ; % Assume an unknown appl iance un t i l proven otherwise

% 1. Check i f s i gna l s have the same sampling rate . I f not , resample .
i f ( sampl ing ra te != o r i g i n a l s amp l i n g r a t e )

cur rent = resample ( current , o r i g i n a l s amp l i n g r a t e , sampl ing ra te ) ;
end

% 2. Compensate for phase o f f s e t s .
app l i ance = c o r r e c t p h a s e s h i f t ( appl iance , s amp l e s i n a pe r i od ) ;

% Compare s i gna l s in frequency domain
% Note tha t we are adding two current waveforms in some cases to simulate
% the connection of two app l iances . This i s l e g i t ima t e as long as we have
% compensated for any phase o f f s e t s between the vo l t a ge s tha t generated these currents .

% We w i l l p lace the r e s u l t s in a matrix .
% This i s pure ly for convenience . I t makes the ex t rac t ion of
% s t a t i s t i c a l measures − such as variance , standard deviat ion , and
% mean − somewhat eas i e r .
N = length ( app l i ance . cur rent ) ;
nTests = 6 ;
cu r r en tD i f f = zeros (N, nTests ) ;

% 1. Compare with monitor
cu r r en tD i f f ( : , 1 ) = app l i ance . cur rent − monitor . cur rent ;
% 2. Compare with rack
cu r r en tD i f f ( : , 2 ) = app l i ance . cur rent − rack . cur rent ;
% 3. Compare with charger
cu r r en tD i f f ( : , 3 ) = app l i ance . cur rent − charger . cur rent ;
% 4. Compare with monitor and rack combined
cu r r en tD i f f ( : , 4 ) = app l i ance . cur rent − ( monitor . cur rent + rack . cur rent ) ;
% 5. Compare with monitor and charger combined
cu r r en tD i f f ( : , 5 ) = app l i ance . cur rent − ( monitor . cur rent + charger . cur rent ) ;
% 6. Compare with rack and charger combined
cu r r en tD i f f ( : , 6 ) = app l i ance . cur rent − ( rack . cur rent + charger . cur rent ) ;

cu r r en tD i f f S td = std ( c u r r en tD i f f ) ;
cur rentDi f fVar = var ( cu r r en tD i f f ) ;
currentDif fMean = mean( c u r r en tD i f f ) ;
[ minVal , app l i ance no ] = min( cu r r en tD i f f S td ) ;

save ( ’ s t a t i s t i c a lD a t a .mat ’ , ’ c u r r en tD i f f ’ ) ;

% I f there was very l i t t l e cor re l a t i on with any s i gna l
% assume an unknown appl iance (=> appl iance no = 0) .
i f (minVal >= matchTol )

app l i ance no = 0 ;

end
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A.3 Test script

Listing 5: MATLAB test script �
% Ti t l e : Appliance de tec t ion te s t−runs
% Author ( s ) : David Co l l ins and Rory Bateman
% Date : October 31 2013
% Descript ion : Test runs for the ’ app l iance de tec t ’ funct ion .

% Load known current data
load ( ’ currentData .mat ’ ) ;

% RUN−TIME PARAMETERS
%
% Boolean f l a g s to contro l cer ta in run−time parameters
%
% Enable noise s imulat ion?
no i s eS imu la t i on = 1 ;
p lo tNo i s e = 0 ;
s igna lToNoi seRat io s = [ 5 , 4 , 3 , 2 , 1 , . 7 5 , . 5 , . 4 , . 3 , . 2 ] ;
%signalToNoiseRatio = 5;
% Enable sampling−rate conversion?
samplingRateConversion = 0 ;
% Enable a phase−s h i f t ?
phaseSh i f t = 1 ;
% Simulate an unknown s i gna l ?
unknownSignal = 0 ;

%for index = 1: l eng th ( signalToNoiseRatios )
s igna lToNoiseRat io = s igna lToNoi seRat ios (3 ) ;
% TEST SIGNAL SYNTHESIS
%
% Synthes ize t e s t s i gna l s
% current = randn( l eng th ( rack . current ) ,1) ;
i f ( unknownSignal )

cur rent = randn ( length ( rack . cur rent ) ,1 ) ;
else

current1 = charger . cur rent ;
% current1 = rack . current ;
% current1 = monitor . current ;

current2 = monitor . cur rent ;
% current2 = 0;

cur rent = current1 + current2 ;
end
vo l tage = rack . vo l tage ;

% NOISE HANDLING
%
% Test to see how much noise the appl iance can cope with in the s i gna l .
%
% Expecting i t to cope with a noise s i gna l whose amplitude i s greater than
% the amplitude of the s i gna l s themselves i s ambitious . Hence , we l im i t
% the amplitude of our noise s i gna l according to the s i z e of the currents themselves .
%
% Note : There i s no point in adding noise to the s i gna l i f i t i s a lready unknown !
i f ( no i s eS imu la t i on && ! unknownSignal )

i f ( var ( current2 ) == 0)
no i s eSca l i ngFac to r = max( cur rent1 ) ;

else
no i s eSca l i ngFac to r = min(max( cur rent1 ) ,max( cur rent2 ) ) ;

end
noiseAmplitude = no i s eSca l i ngFac to r / s igna lToNoiseRat io ;
o r i g c u r r e n t = current ;
cur rent = o r i g c u r r e n t + randn ( length ( cur rent ) ,1 ) ∗noiseAmplitude ;
i f ( p lo tNo i s e )

% Compare o r i g i na l and noisy s i gna l s
subplot ( 3 , 1 , 1 ) ;
plot ( o r i g c u r r e n t ) ;
subplot ( 3 , 1 , 2 ) ;
plot ( current , ’ r ’ ) ;
subplot ( 3 , 1 , 3 ) ;
plot ( current , ’b ’ ) ;
hold on ;
plot ( o r i g cu r r en t , ’ g ’ ) ;
pause ( ) ;

end
end

% PHASE COMPENSATION
%
% Ensure tha t the app l i ca t i on can cope with
% phase o f f s e t s ( i . e . s h i f t s in the time−domain) .
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i f ( phaseSh i f t )
nSh i f t = 23 ;
cur rent = s h i f t ( current , nSh i f t ) ;
vo l tage = s h i f t ( vo l tage , nSh i f t ) ;

end

% SAMPLING RATE COMPENSATION
%
% What i s the sampling rate of our data?
sampl ing ra te = 8e+3;
i f ( samplingRateConversion )

new sampl ing rate = 8e+3;
% I f we want to change the sampling rate ( even j u s t for t e s t i n g purposes )
% we w i l l need to ’ resample ’ .
i f ( sampl ing ra te != new sampl ing rate )

disp ( ’ Resampling . . . ’ ) ;
cur rent = resample ( current , new sampl ing rate , sampl ing ra te ) ;
vo l tage = resample ( vo l tage , new sampl ing rate , sampl ing ra te ) ;

end
sampl ing ra te = new sampl ing rate ;

end

% IMPORTANT PART
% Run the actua l appl iance de tec t ion funct ion .
%
% Note : We a l so time how long the algorithm takes − using t i c () and toc () .
t i c ( ) ;
app l i ance no = app l i an c e d e t e c t ( current , vo l tage , sampl ing ra te ) ;
e l apsed t ime = toc ( ) ;

% Then map numbers to app l iances .
switch ( app l i ance no )

case {0}
app l i anceDes c r i p t i on = ’unknown ’ ;

case {1}
app l i anceDes c r i p t i on = ’ monitor ’ ;

case {2}
app l i anceDes c r i p t i on = ’ rack ’ ;

case {3}
app l i anceDes c r i p t i on = ’ charger ’ ;

case {4}
app l i anceDes c r i p t i on = ’ monitor and rack ’ ;

case {5}
app l i anceDes c r i p t i on = ’ monitor and charger ’ ;

case {6}
app l i anceDes c r i p t i on = ’ rack and charger ’ ;

end

% OUTPUT
%
% Print r e s u l t s on screen .
%msg = s t r ca t ( ’ Appliance no . i s ’ , num2str ( appl iance no ) ) ;
%disp (msg) ;

msg = s t r c a t ( ’ Connected app l i ance ( s ) : ’ , app l i anceDes c r i p t i on ) ;
disp (msg) ;

%pr in t f ( ’ ( Appliance de tec t ion algorithm took %.5 f seconds\n) ’ , e lapsed t ime ) ;

%end
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B Other Methods

B.1 Correlation

We also considered using correlation to identify signals.
All of the known currents have strong sinusoidal compo-
nents, however, which poses a problem. Cross-correlating
a sinusoidal signal with another sinusoidal signal with the
same frequency components yields a periodic sequence.

B.2 Impedance

Another method we considered was identifying appliances
by their impedance. After all, for a linear electrical circuit,
the impedance is simply a transfer function the ratio of
the complex voltage to the complex current.

Unfortunately, the circuits in question are not linear
there are clearly frequency components in the current which
are not present in the voltage input. This is evident from
a quick glance at Figure 8, in which the frequency content
of the current waveforms for each appliance are plotted
above the corresponding voltage frequencies.

Consider the electrical components typically present in
a charger, for example. The input stage of the charger will
typically include a transformer and a rectifier. The rectifier
consists of diodes, which exhibit non-linear behaviour.

B.3 Power Spectrum Density

The third technique we considered using to solve this task
was to find the power spectrum density of each signal from
the appliance and compare them. Power Spectral Density
is the counterpart in the frequency domain of the autocor-
relation function (ACF), which is a function of the time
shift variable m. The power spectrum can be used to indi-
cate how the signals power is distributed in the frequency
domain. . Our goal was to extract information such as
the signals power or energy distribution in the frequency
domain which can be obtained using the power spectrum
method which in turn would allow us to differentiate be-
tween appliances in use at any given time.

However when trying to implement this method we
found it to be complex and time consuming. One issue that
arose was the ability to differentiate between the different
power spectrums of each appliance as the characteristics
of the each signal are quite similar.

B.4 Power used by appliances

A fourth alternative method was taken into consideration
for this problem which was to obtain the power in watts
being used by each appliance. As we know from basic
circuit theory the real power being used can be defined as
P = V I cos (θ). Or for a purely resistive load we have:

P = V I = I2R.

However problems arose when we looked into using this
method such as calculating the phase angle between the
voltage and current and also the appliances not being purely
resistive loads.
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Figure 8: Voltages and currents in the frequency domain
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