
Design and Testing of an Analogue Controller

David Collins (C10736685)
Programme: DT021

Year: 2
Module: Introduction to Control

Module coordinator: Mr. Gerard Caffrey
March 2012

Abstract

This series of labs looks at two aspects of basic control theory. Firstly,
the simplication of higher-order systems is considered — the modelling
of third-order systems with first-order approximations specifically. Sec-
ondly, three categories of control systems are examined: 1. proportional
controllers, 2. proportional+integral controllers, and finally 3. PID (pro-
portional+integral+derivative) controllers. In order to highlight the need
for process control — i.e. why controllers are needed in the first place —
the concept of load disturbance is introduced briefly.

There are a variety of ways to derive the parameters necessary to
implement PID controllers. The formulas used to do so are referred to
as ‘tuning formulas’. In this lab, relatively simple formulae developed by
Ziegler and Nichols will be employed.

Much of the modelling and simulation was performed using MATLAB
— using the Simulink package. The use of software to test the models de-
rived greatly facilitates the process, and obviates the need to perform tests
with actual hardware (e.g. mechanical, electrical or hydraulic systems).

Following the simulation in software, the system was implemented in
hardware using a function generator and process control simulator. Mea-
surements were taken using a digital oscilloscope, and based on these
a comparison between the software and hardware implementations was
made.

David Collins DT021/2: Intro to Control Semester 2 2012

Contents

1 Introduction 3
1.1 First-Order Lag Plus Deadtime Model of Higher-Order Systems . 3
1.2 PID Controllers . 3
1.3 Controller Tuning Formulae . 4

2 Modelling of Third-Order Systems 4
2.1 First-Order Approximation . 5
2.2 Disturbances & Feedback . 7

3 PID Controllers 9
3.1 Proportional Control . 9
3.2 Proportional-Integral-Derivative (PID) Control 9

4 Software Implementation 10
4.1 Proportional Control . 10
4.2 Proportional-integral control . 10
4.3 Proportional-integral-derivative (PID) control 11

5 Hardware Implementation 13

6 Comparison 15
6.1 Comparison of Controller Types 15
6.2 Hardware vs. Software . 15

7 Conclusion 16
7.1 Approximation of Third-Order Systems 16
7.2 PID Controllers . 16
7.3 Sources of discrepancy between hardware and software implemen-

tations . 16

A A. Ziegler-Nichols Tuning Method 17

B B. Source Code 17
B.1 First-Order Modelling . 17
B.2 PID Controller . 18
B.3 Plotting & Performance Metrics 19

C C. Disturbance Rejection 21

2

David Collins DT021/2: Intro to Control Semester 2 2012

1 Introduction

1.1 First-Order Lag Plus Deadtime Model of Higher-Order
Systems

The time-domain step response of a third-order process is a sigmoidal graph.
Such a function can be approximated by a simpler expression of the form

c′(t) = Akp(1− e−t/τ) (1)

where A is the amplitude of the step input, kp is the steady-state gain of the
original third-order system, and τ is the time-constant of the system.

It is important to note that the approximation in equation 1 must be used
in conjunction with a time delay, Td. Thus the correct expression is actually

c(t) = AkpH(t− Td)(1− e−(t−Td)/τ), (2)

where H(t) denotes the Heaviside step function. Then, according to the t-shift
theorem, the transfer function for this system is

Gp(s) =
kpe
−sTd

1 + τs
, (3)

and the system itself is referred to as a first-order lag plus deadtime model. Our
initial task in this series of labs is to determine the parameters τ and Td, which
are the time-constant and time-delay for our first-order model respectively.

1.2 PID Controllers

Consider a feedback system in which the feedback is

e(t) = r(t)− c(t),

where c(t) is the actual system output and r(t) is the set-point or desired output.
A proportional controller, then, is one in which the controller transfer function
is a single term kce(t). A PID controller, on the other hand, also includes terms
for both of the derivative and integral of the error, giving

u(t) = kce(t) + ki

∫
e(t)dt+ kd

d

dt
e(t) (4)

Qualitatively, this means that the instantaneous controller gain depends not
only on the current value of the error, but also on the rate at which it is changing.
Furthermore, due to the integral term, the gain also depends on the history of
previous values.

3

David Collins DT021/2: Intro to Control Semester 2 2012

r(t)
∑

Gc(s)

PID Controller

Gp(s)

Process

c(t)
+ e(t)

E(s)

u(t)

U(s)

c(t)

C(s)

−

Figure 1: Canonical Block Diagram

1.3 Controller Tuning Formulae

Referring to Figure 1, the second block, Gp(s), is the third-order process we want
to model. The first block, Gc(s), is a PID controller. The primary purpose of the
controller is to compensate for the effect of disturbances on the sytem. During
the laboratories, we will determine the parameters necessary to achieve this as
effectively as possible (Section 3.2). We will do this using a set of formulae
provided by Ziegler and Nichols (Appendix A).

Before we can derive the parameters kc, τi and τd necessary for the PID
controller, we first need to derive a first-order model of our the third-order
process. This will yield the time constant τ and delay time Td upon which the
Ziegler-Nichols formulae depend.

2 Modelling of Third-Order Systems

We begin with a third-order system whose transfer function is

Gp(s) =
k1

1 + τ1s
· k2

1 + τ2s
· k3

1 + τ3s
, (5)

and in this case we chose the simple values

k1 = 1, k2 = 1, k3 = 1, τ1 = 1, τ2 = 2, τ3 = 3.

Before attempting to determine a first-order approximation of the system, we
can place the transfer function in a condensed form for convenience. The above

4

David Collins DT021/2: Intro to Control Semester 2 2012

equation can be rewritten:

Gp(s) =
k1k2k3

(1 + τ1s)(1 + τ2s)(1 + τ3s)

=
k1k2k3

(1 + τ1s)(1 + s(τ2 + τ3) + τ2τ3s2)

=
k1k2k3

1 + s(τ2 + τ3) + τ2τ3s2 + τ1s+ s2(τ1τ2 + τ1τ3) + τ1τ2τ3s3

=
k1k2k3

τ1τ2τ3s3 + s2(τ1τ2 + τ1τ3 + τ2τ3) + s(τ1 + τ2 + τ3) + 1

=
1

6s3 + 11s2 + 6s+ 1
.

Placing the transfer function in this form enables us to replace the three gain
blocks in our block diagram with one (Figure 3).

The unit step response of the above system is

C(s) = R(s)Gp(s)

=
1

s

1

6s3 + 11s2 + 6s+ 1
.

Taking the inverse Laplace transform of this expression yields the response in
the time domain (Figure 2):

c(t) = L−1
{

1

s

1

6s3 + 11s2 + 6s+ 1

}
= −9 e−

t
3

2
+ 4 e−

t
2 − e−t

2
+ 1

2.1 First-Order Approximation

As explained in the introduction, we want to determine two parameters for our
first-order lag plus dead-time model: the time-constant τ and the deadtime Td.
To do this we firstly determined the two times t1 and t2 at which the output
c(t) had reached 0.28 and .63 of its steady-state value respectively. From Figure
2 we determined these as t1 = 3.51s and t2 = 6.437s. Then,

• τ = 3
2 (t2 − t1) = 3

2 (6.437− 3.51) = 4.391s,
• Td = t2 − τ = 6.437− 4.391 = 2.05s.

τ = 4.391 , Td = 2.05

From equation 3, the transfer function for the model is then

Gp′(s) =
kpe
−sTd

1 + τs

=
e−2.05s

1 + 4.391s
,

5

David Collins DT021/2: Intro to Control Semester 2 2012

0

M
ea
su
re
m
en
ts

0 10 20
Time (s)

Td Td � τ

1

cptq � 1� 1
2
e�t � 4e�t{2 � 9

2
e�t{3

τ

Figure 2: Unit-Step Response of A Third-order Process

R(s)
kp1

1+τ1s

kp2
1+τ2s

kp3
1+τ3s

C(s)

(a) Original 3-block Process

R(s) 1
6s3+11s2+6s+1 C(s)

(b) Block Diagram Reduction

Figure 3: Open-Loop System (No Controller Block)

since the gain kp = 1, and the response of the process to a unit step input is

c(t) = H(t− Td)
[
1− e−

t−Td
τ

]
= H(t− 2.05)

[
1− e−(t−2.05)/4.39

]
,

where H(t) denotes the Heaviside step function. Having determined both the
dead time and the time constant for the first-order approximation, we can plot
its unit step response and compare it to that of the original process. This is
demonstrated in Figure 5.

The Simulink model used to perform this approximation and comparison is
shown in Figure 4. The accompanying MATLAB code is shown in Listing 1.

6

David Collins DT021/2: Intro to Control Semester 2 2012

Transport
Delay

t

Time

Set-point

c1

Measurements2

c

Measurements1

Measurements

kp
tau.s+1

Lag4

kp3
tau3.s+1

Lag3

kp2
tau2.s+1

Lag2

kp1
tau1.s+1

Lag1

Clock

Figure 4: First-Order Model of Third-Order Process — Simulink Diagram

2.2 Disturbances & Feedback

An open-loop system is adequate as long as the process is not disturbed. How-
ever, if there is a disturbance in the system, the loop needs to be closed in order
for the system to compensate (Figure 6b). Without feedback, the system can
have no knowledge of the difference between the set-point r(t) and the output
c(t). In order to compensate for potential disturbances, we need to 1. provide
a ‘feedback’ path — i.e. route the output c(t) back to a summing junction at
the start of the loop, and 2. introduce a controller block which responds to this
feedback.

Assuming we have unity (inverted) gain feedback, the error signal, e(t), fed
into the controller is

e(t) = r(t)− c(t).
The controller responds to this error to produce an intermediate output

u(t) = f(e(t)),

where f(e(t)) denotes that the controller output is a function of the error e(t).
In the case of a PID controller, we know that the general form of this function
is

u(t) = kce(t) + ki

∫
e(t)dt+ kd

de(t)

dt
, (6)

where kc, ki and kd are unknown constants which will depend on the system
process under consideration. Our task here is to determine values for these three
parameters such that the error e(t) is minimised. The Ziegler-Nichols formulae
shown in Appendix A will be used for this purpose.

7

David Collins DT021/2: Intro to Control Semester 2 2012

0

M
ea
su
re
m
en
ts
,
c

0 10 20
Time (s)

Td

1

cptq
cmodelptq

Figure 5: Comparison: Step-response of Third-order Process vs. Step-response
of First-order Model

R(s) 1
6s3+11s2+6s+1

D(s)
Disturbance

C(s)

(a) System With Disturbance (No Feedback)

R(s)
∑

Gc(s)
1

6s3+11s2+6s+1

D(s)
Disturbance

C(s)

C(s)

-

(b) Introduction of Feedback Path and Controller

8

David Collins DT021/2: Intro to Control Semester 2 2012

3 PID Controllers

3.1 Proportional Control

In the case of purely proportional control, the time-domain response of the
controller is of the form

u(t) = kce(t). (7)

In the Laplace domain, we have

U(s) = kcE(s). (8)

Proportional-only control is not as useful as proportional-integral or PID con-
trol, however. This can be seen by examining the performance characteristics
in Table 2, for example. For this reason, the PID controller will be considered
next.

3.2 Proportional-Integral-Derivative (PID) Control

For a proportional-integral-derivative controller, the time-domain response of
the controller, i.e. the output u(t) in terms of input e(t), is

u(t) = kce(t) + ki

∫
e(t) + kd

d

dt
e(t) (9)

In the Laplace domain this becomes

U(s) = Gc(s)E(s),

where

Gc(s) = kc + ki
1

s
+ kds (10)

= kc

[
1 +

ki
kcs

+
kd
kc
s

]
(11)

= kc

[
1 +

1

kc/kis
+
kd
kc
s

]
(12)

= kc

[
1 +

1

τis
+ τds

]
, (13)

where τi = kc
ki

and τd = kd
kc

. Once we determine the appropriate values of τi and
τd using the Ziegler-Nichols formulae (Section A), we can calculate the values
ki and kd according to

ki =
kc
τi
, kd = τdkc.

Using the formulae in Table 3, as well as the values derived for our first-order
lag plus deadtime model, we can determine the required controller parameters.
The gain kp = 1 so the term 1

kp
can be ignored in all cases. The results are

shown in Table 1.

9

David Collins DT021/2: Intro to Control Semester 2 2012

Time form Gain form
kc τi τd ki kd

Proportional
only

2.14

Proportional-
integral

1.927 6.833 .282

PID 2.57 4.10 1.025 .627 2.634

Table 1: Parameters for Different Controller Types

4 Software Implementation

The purpose of the controller, as mentioned previously, is to maintain system
stability by responding to the system error e(t) = r(t) − c(t). To accomplish
this, the controller block must be integrated in to the system as shown in Figure
6b.

Inititally, the simulation was performed on computer. The MATLAB code
used is shown in Appendix B. The Simulink diagram is shown in Figure 6. The
results are discussed below.

t

Time

Set-point

PID

Proportional only

kp

den(s)

Process

c

Measurements

Clock

Figure 6: Third-Order Process with Feedback and Controller Block

4.1 Proportional Control

The output of the system with proportional controller is shown in Figure 7.
We note that the proportional controller yields a large steady-state error. The
percentage overshoot is

cmax − css
css

× 100% =
.86− .68

.68
× 100% = 26.47%.

4.2 Proportional-integral control

The proportional-integral controller, in contrast, yields a very small steady-state
error. This is shown in Figure 8. Despite it’s good reference-tracking, it has a

10

David Collins DT021/2: Intro to Control Semester 2 2012

1

M
ea
su
re
m
en
ts

10 20 30
Time (s)

Tp Ts

0.1css

0.9css
css

cmax

css ≈ .68

Overshoot

Tr

large steady-
state error

Figure 7: Proportional Controller
Tr = t.9css − t.1css , Ts = time taken for output to reach ±2% of final value.

long rise and settling time (Table 2).

4.3 Proportional-integral-derivative (PID) control

The PID controller has a shorter settling time than either the P or PI controller.
It also has a negligible steady-state error. It’s primary drawback is that it
results in a very large overshoot — much larger than either of the other types
of controller (Table 2).

11

David Collins DT021/2: Intro to Control Semester 2 2012

1
M
ea
su
re
m
en
ts

10 20 30
Time (s)

Tp Ts

0.1css

0.9css

cmax

css = 0.994 ≈ 1.0

Overshoot

Tr

Figure 8: Proportional-Integral Controller

1M
ea
su
re
m
en
ts

10 20 30
Time (s)

Tp Ts

0.1css

0.9css

cmax

css = 0.999 ≈ 1.0

Overshoot

Tr

Figure 9: PID Controller

12

David Collins DT021/2: Intro to Control Semester 2 2012

5 Hardware Implementation

Having successfully simulated our control system in software, the next step was
to implement it in hardware. The set-point was provided by a function generator
supplying a square wave signal with 2 V peak-to-peak amplitude. The frequency
was set to 0.02 Hz, yielding a period of 50 s. This essentially provided a unit-
step function which was ‘reset’ (and changed direction) every 25 s. The settling
time of all our controller variations (Table 2) was less than 18 s, so a signal of
25 s in duration is adequate to examine the system behaviour.

The output of the proportional, proportional-integral, and PID hardware
controllers are shown in Figures 10, 11 and 12 respectively. The corresponding
metrics are shown in Table 2

0

1

2

3

M
ea
su
re
m
en
ts

10
Time (s)

Tp Ts

0.1css

0.9css

css

cmax

css ≈ .68

Overshoot

Tr

large steady-
state error

Figure 10: Hardware Proportional Controller

13

David Collins DT021/2: Intro to Control Semester 2 2012

0

1

2

3

M
ea
su
re
m
en
ts

10 20
Time (s)

Tp Ts

0.1css

0.9css

cmax

css = 2

Overshoot

Tr

Figure 11: Hardware Proportional-integral Controller

−1

0

1

2

3

M
ea
su
re
m
en
ts

10 20
Time (s)

Tp Ts

0.1css

0.9css

cmax

css = 2 ≈ 2

Overshoot

Tr

Figure 12: Hardware PID Controller

14

David Collins DT021/2: Intro to Control Semester 2 2012

6 Comparison

6.1 Comparison of Controller Types

Figure 13 provides a visual comparison of the output of each controller as im-
plemented in software.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison of P, PI, and PID controllers

t

M
ea

su
re

m
en

ts

Proportional only
Proportional−integral
PID control

Figure 13: Unit-Step Response Using Different Controller-Types

6.2 Hardware vs. Software

As well as comparing different types of controller (proportional vs. proportional-
integral vs. PID), we can compare the results of the software implementation
with those of the hardware implementation. Table 2 gives the numerical val-
ues of various performance characteristics for each controller type — both the
hardware and software implementation. The results of the hardware controllers
correspond reasonably well to those of the software implementations. Possible
reasons for the discrepancy are discussed in section 7.3.

15

David Collins DT021/2: Intro to Control Semester 2 2012

Controller type Steady-
state error

Overshoot Tr (s) Tp (s) Ts (s)

Absolute Absolute %
P software 0.32 0.18 26.5 2.59 6.36 14.43

hardware - - 30.0 1.36 3.34 12.5
PI software 0.0 0.12 12 3.32 7.25 17.26

hardware - - 4.22 2.04 3.88 16.28
PID software 0.0 0.25 25 2.81 6.95 12.44

hardware - - 7.10 3.46 8.35 14.67
Tr = rise time, Tp = peak time, Ts = settling time.

Table 2: Metrics of Systems with Different Controller Types

7 Conclusion

This article highlighted a number of important points relating to first-order
models and PID controllers.

7.1 Approximation of Third-Order Systems

Firstly, we have demonstrated that a third-order process can be approximated
to a high degree by determining only two parameters, the time constant and
the dead-time (Figure 5).

7.2 PID Controllers

Secondly, we demonstrated that — given a particular third-order process (or
its first-order approximation) — there exist clearly-defined methods for design-
ing a suitable controller. We examined one such method in this article, and
demonstrated its effectiveness in maintaining system stability.

7.3 Sources of discrepancy between hardware and soft-
ware implementations

The discrepancies between the implementations in hardware and software can
be attributed to the following factors.

hardware PID parameters For the hardware implementation the values of
kc, τi and τd were set using analog controls. These were subject to a large
degree of uncertainty and may significantly affected the output values.

set-point In the hardware implementation the set-point was provided by a
function generator. Mathematically, the input in this case was a square
wave which was oscillated between values of -2 and 2. In the software
implementation, in contrast, the input was a unit-step. Considering the
different nature of the inputs, we can not expect the same outputs.

16

David Collins DT021/2: Intro to Control Semester 2 2012

A A. Ziegler-Nichols Tuning Method

Control systems have two antagonistic goals:

1. fast response, and

2. stability.

The Ziegler-Nichols method yield good system stability, at the expense of poor
response time. The formulae developed by Ziegler and Nichols are as shown in
Table 3.

Proportional
gain, kc

Integral time,
τi

Derivative
time, τd

Proportional con-
troller

1
kp

τ
Td

Proportional + in-
tegral controller

0.9
kp

τ
Td

Td
0.3

PID controller 1.2
kp

τ
Td

2Td
Td
2

Table 3: Tuning-Formulae for Various Controllers

B B. Source Code

B.1 First-Order Modelling

The first part of the project consisted of establishing the parameters for our
first-order lag plus deadtime approximation of the third-order systme. The
MATLAB code used to accomplish this is presented in Listing 1.

Listing 1: MATLAB Code for First-Order Modelling of A Third-Order System� �
%Third−order system
%
% Descr ip t i on : Simulat ion o f a t h i r d order
% proces s us ing Simul ink .
%
%
% Date : February 7 , 2012
% Author : David Co l l i n s
%
clc ; close a l l ; clear a l l
%
% −−− Constants −−−−−−−−−−−−−−−−−
kp1 = 1 ;
kp2 = 1 ;
kp3 = 1 ;
tau1 = 1 ;

17

David Collins DT021/2: Intro to Control Semester 2 2012

tau2 = 2 ;
tau3 = 3 ;
% −−− Denominator c o e f f i c i e n t s o f s im p l i f i e d t r an s f e r f unc t i on

−−−
kp = kp1∗kp2∗kp3 ;
c0 = 1 ;
c1 = tau1 + tau2 + tau3 ;
c2 = tau1∗ tau2 + tau1∗ tau3 + tau2∗ tau3 ;
c3 = tau1∗ tau2∗ tau3 ;
% −−− Firs t−order model −−−−−−−−−
kp = 1 ;
tau = 4 . 3 9 ; % time cons tant
td = 2 . 0 5 ; % dead time
% −−− Actual program −−−−−−−−−−−−
sim (’ th i rd o rde r p roc e s s w mode l ’) ;
% −−− P l o t t i n g −−−−−−−−−−−−−−−−−−
% −−− Third−order proces s −−−−−−−
f igure ;
plot (t , c) ;
grid ;
xlabel (’Time (s) ’) ;
ylabel (’ Measurements ’) ;
t i t l e (’ Unit−Step Response Of A Third−Order Process ’) ;
% −−− Firs t−order approximation −
f igure ;
plot (t , c) ;
hold on ;
plot (t , c1) ;
grid ;
xlabel (’Time (s) ’) ;
ylabel (’ Measurements ’) ;
t i t l e (’ F i r s t−Order Approximation o f a Third−Order Process ’) ;� �
B.2 PID Controller

Listing 2: MATLAB Code for PID Controllers� �
%Analogue c o n t r o l l e r s
%
% Descr ip t i on : Propor t iona l (P) , Propor t iona l−i n t e g r a l
% (PI) and Propor t iona l−i n t e g r a l−d e r i v a t i v e (PID)
% c o n t r o l l e r s
%
% Date : February 21 , 2012
% Author : David Co l l i n s
%
kp = 1 ;
tau = 4 . 3 9 ; % time cons tant
td = 2 . 0 5 ; % dead time/ de lay time

18

David Collins DT021/2: Intro to Control Semester 2 2012

% Propor t iona l c on t r o l
% Note : t h e r e i s no need to
% determine the i n t e g r a l time and d e r i v a t i v e time
% s ince they are not r e l e v an t in t h i s case .
kc p = tau / td ;

% Propor t iona l + i n t e g r a l c on t r o l
k c p i = 0 .9 ∗ tau / td ;
T i p i = 3 .33 ∗ td ;
k i p i = k c p i / T i p i ;

% Propor t iona l + i n t e g r a l + d e r i v a t i v e (PID) con t r o l
kc = 1 .2 ∗ tau / td
Ti = 2∗ td ;
k i = kc/Ti
Td = .5∗ td ;
kd = kc∗Td

sim (’ p i d c o n t r o l l e r ’) ;

f igure () ;

plot (t , c) ;
hold () ;
plot (t , c1 , ’ r ’) ;
plot (t , c2 , ’ g ’) ;
grid () ;
t i t l e (’ Comparison o f P, PI , and PID c o n t r o l l e r s ’) ;
xlabel (’ t ’) ;
ylabel (’ Measurements ’) ;
legend (’ Propor t i ona l only ’ , ’ Proport iona l−i n t e g r a l ’ , ’PID

c o n t r o l ’) ;� �
B.3 Plotting & Performance Metrics

The system outputs were plotted in Asymptote.1 This facilitated more accurate
annotation than MATLAB, as well as reliable measurement of performance
metrics (Listing 3).

Listing 3: Plotting and Performance Metrics in Asymptote� �
/∗

Descr ip t i on : P l o t t i n g and Performance Metr ics
Author : David Co l l i n s
Date : March 2012

∗/

1See http://asymptote.sourceforge.net/.

19

http://asymptote.sourceforge.net/

David Collins DT021/2: Intro to Control Semester 2 2012

// Import necessary modules
import graph ;
import geometry ;
import i n t e r p o l a t e ;
// Set output format
s e t t i n g s . outformat = ” pdf ” ;
// Image s i z e
s i z e (9cm, 7 .5cm, IgnoreAspect) ;
// Read output va l u e s from CSV f i l e
s t r i n g f i l ename = ” c o n t r o l l e r−p . csv ” ;
f i l e my f i l e = input (f i l ename) ;
pa i r p [] = myf i l e ;
// Define l i n e s t y l e s
pen h l i n e s = gray+dashed ;
pen dpen = black+l inew id th (1 . 2 pt) ;
// Define path / curve based on va l u e s in f i l e
r e a l f (pa i r A) { return A. x ; }
r e a l g (pa i r A) { return A. y ; }
r e a l t imes [] = map(f , p) ;
r e a l measurements [] = map(g , p) ;
r e a l s (r e a l) = f s p l i n e (times , measurements) ;
path p1 = graph (s , min (t imes) , max(t imes)) ;
// Performance metr i c s
r e a l cmax = max(p1) . y ;
r e a l c s s = s (max(t imes)) ;
r e a l t1 = point (p1 , t imes (p1 , (0 , c s s ∗ . 1)) [0]) . x ;
r e a l t2 = point (p1 , t imes (p1 , (0 , c s s ∗ . 9)) [0]) . x ;
r e a l Tp = point (p1 , t imes (p1 , (0 , cmax)) [0]) . x ; // peak time
r e a l Ts = point (p1 , t imes (p1 , (0 , c s s ∗ . 9 8)) [2]) . x ; // s e t t l i n g

time
r e a l Tr = t2 − t1 ;
wr i t e (cmax) ;
wr i t e (c s s) ;
wr i t e (Tr) ;
wr i t e (Ts) ;
wr i t e (Tp) ;
// Draw curve and axes
draw (p1 , dpen) ;
xax i s (”Time (s) ” , Le f tT icks (b e g i n l a b e l=f a l s e , s tep =0, Step=10)

, Arrow) ;
yax i s (Label (”Measurements” , a l i g n =6∗W) , Le f tT icks (b e g i n l a b e l=

f a l s e , Step =1, s tep =0.5) , Arrow) ;
// Annotations
x t i c k (”$T p$” , Tp) ;
x t i c k (”$T s$” , Ts) ;
y t i c k (Label (”$0 . 1 c { s s }$” , a l i g n=W) , 0 .1∗ c s s) ;
y t i c k (Label (”$0 . 9 c { s s }$” , a l i g n=W) , 0 .9∗ c s s) ;
y t i c k (Label (” $c { s s }$” , a l i g n=W) , c s s) ;
y t i c k (” $c {max}$” , cmax) ;
arrow (” $c { s s } \approx .68 $” , (max(t imes) , c s s) , SW) ;

20

David Collins DT021/2: Intro to Control Semester 2 2012

xequa l s (t1 , 0 , 0 .1∗ css , h l i n e s) ;
xequa l s (t2 , 0 , 0 .9∗ css , h l i n e s) ;
xequa l s (Tp, 0 , cmax , h l i n e s) ;
xequa l s (Ts , 0 , 0 .98∗ css , h l i n e s) ;
yequa l s (0 . 1∗ css , 0 , t1 , h l i n e s) ;
yequa l s (0 . 9∗ css , 0 , t2 , h l i n e s) ;
yequa l s (css , h l i n e s) ;
yequa l s (cmax , 0 , Tp, h l i n e s) ;
yequa l s (0 . 98∗ css , 0 , Ts , h l i n e s) ;
yequa l s (1 , h l i n e s) ;
d i s t ance (r o t a t e (−90)∗Label (” Overshoot ” , a l i g n=E) , (Tp, c s s) , (

Tp, cmax)) ;
d i s t ance (Label (”$T r$” , a l i g n=S) , (t1 , 0) , (t2 , 0)) ;
d i s t ance (r o t a t e (−90)∗Label (minipage (”\ s c r i p t s i z e { l a r g e steady−

s t a t e e r r o r }” , 50 pt) , a l i g n=W) , (27 , c s s) , (27 ,1)) ;� �
The metrics can be determined partly by visual inspection. It is easier to

use software to do this however. In this case, the script shown in Listing 3 was
used.

C C. Disturbance Rejection

As mentioned in Section 2.2, one of the primary reasons for implementing con-
trollers is to counteract the effects of disturbances on a process. Consider the
system output shown in Figure 14, for example. The set-point in this case is sim-
ply 1, and the output initially follows the set-point. However, at time t = 27s,
there is a system disturbance — after which the output no longer tracks the
output.

To counteract this disturbance, feedback and a controller are required. The
block diagram then becomes that shown in Figure 6b, and the output is shown in
Figure 15. Due to the feedback and controller, the system quickly compensates
for the disturbance.

21

David Collins DT021/2: Intro to Control Semester 2 2012

System disturbance

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

Effect of disturbance on system output

Tim e (s)

M
e

a
su

re
m

e
n

ts

Figure 14: Disturbance with No Feedback

System disturbance

Com pensat ion due to cont roller

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

Effect of disturbance on system output

Tim e (s)

M
e

a
su

re
m

e
n

ts

Figure 15: Disturbance-rejection Due to Feedback and Controller

22

	Introduction
	First-Order Lag Plus Deadtime Model of Higher-Order Systems
	PID Controllers
	Controller Tuning Formulae

	Modelling of Third-Order Systems
	First-Order Approximation
	Disturbances & Feedback

	PID Controllers
	Proportional Control
	Proportional-Integral-Derivative (PID) Control

	Software Implementation
	Proportional Control
	Proportional-integral control
	Proportional-integral-derivative (PID) control

	Hardware Implementation
	Comparison
	Comparison of Controller Types
	Hardware vs. Software

	Conclusion
	Approximation of Third-Order Systems
	PID Controllers
	Sources of discrepancy between hardware and software implementations

	A. Ziegler-Nichols Tuning Method
	B. Source Code
	First-Order Modelling
	PID Controller
	Plotting & Performance Metrics

	C. Disturbance Rejection

