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1 Background

1.1 Filter specifications

We have been asked to design a filter which meets the following requirements:
Pass-band: Amax = 1dB, fp = 1kHz
Stop-band: Amin = 15dB, fs = 4kHz

The meaning of these parameters are explained with the aid of Figure 1.
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Figure 1: Frequency response of a low-pass filter

• fp — the frequency at the upper-edge of the pass-band; frequencies below this can be attenuated by no more
than Amax

• fs — the frequency at the lower-edge of the stop-band; frequencies above this must be attenuated by at least
Amin

• Amax — the maximum acceptable loss in the passband
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1.2 Ideal vs. practical filters 1 BACKGROUND

• Amin — the minimum acceptable loss in the stopband

1.2 Ideal vs. practical filters

Although an ideal filter is impossible — even in the digital domain — increasing the order of a filter allows one to
approach the ideal frequency response. There are practical limitations on the order of the filter however — in the
analog domain due to the number of components required and in the digital domain due to the time of computation.

1.3 Butterworth approximation functions

There are various classes of filter functions which could be used for the present purpose. We have chosen to use a
Butterworth filter, however. The transfer functions for normalised versions of such filters — for filters of various
order — are

n = 1: 1
s+1

n = 2: 1
s2+
√
2s+1

n = 3: 1
s2+s+1 · 1

s+1 .

1.3.1 Denormalisation

In the course of designing a filter these transfer functions are denormalized by replacing s with ε1/n

ωp
s, where ωp is

the angular passband frequency (in radians per second).

1.4 Loss function

We note, in the case of the second-order filter (n=2), that 1/G(s) is

1

G(s)
=

ε

ω2
p

s2 +
√

2
ε1/2

ωp
s+ 1.

Since s = σ + jω and s
∣∣∣
σ=0

= jω,

1

G(ω)
=

ε

ω2
p

j2ω2 +
√

2
ε1/2

ωp
jω + 1 = −ε

(
ω

ωp

)2

+
√

2ε
ω

ωp
j + 1

=

(
−ε
(
ω

ωp

2
+ 1

)
+ j
√

2ε
ω

ωp

)
,

and has magnitude ∣∣∣∣ 1

G(ω)

∣∣∣∣ =

√
ε2
(
ω

ωp

)4

− 2ε

(
ω

ωp

)2

+ 1 + 2ε

(
ω

ωp

)2

=

√
1 + ε2

(
ω

ωp

)4

=

√
1 + ε2

(
ω

ωp

)2n

.

This is an expression for the voltage loss rather than gain in terms of ε, ω, and n. Converting this value to
decibels and denoting the result as A(ω) yields equation 1.

A(ω) = 10 log10

[
1 + ε2

(
ω

ωp

)2n
]
. (1)

(Note that A(ω) is a real rather than complex value.) This was an informal verification for the case of n = 2, but
equation 1 is valid for a filter of any order.
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1.5 Filter parameters 1 BACKGROUND

1.5 Filter parameters

By taking equation 1 and solving for the case of ω = ωp it can be shown that

ε =
√

10.1Amax − 1. (2)

which will be important in matching our filter to the requirements.
We also need to know what order of filter is required. This is found by using equation 3 (which, again, can be

derived from equation 1.

n =
log10

(
10.1Amin−1

ε2

)
log10

(
ωs
ωp

)2 (3)

1.6 Component tolerances and random sampling

Our filter is to be implemented using an active RC electricial circuit. All electrical resistors and capacitors have a
tolerance, which is the fraction by which the component value may deviate from its nominal value. A resistor with
a nominal value of 1kΩ, for example, is not exactly 1kΩ. It’s value, rather, is — e.g. — 1kΩ± 10%, 1kΩ± 2%, or
1kΩ± 1%, depending on the tolerance.

Unsurprisingly, these variations in component values will have a significant effect on the performance of our
filter. Instead of performing a single simulation, we will perform a large number of simulations and calculate the
mean and standard deviation values. The deviation about the mean can then be considered graphically by plotting
equation 4 (Figure 2).

P (x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(4)
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Figure 2: Probability density function

The gain of our filter must lie between -1 and 0 dB at the passband frequency. The percentage failure of our
circuit builds will be determined by calculating the area under the curve that lies outside this range (highlighted in
Figure 2b).

The area is more easily calculated by converting this distribution to a unit normal distribution — i.e. a
distribution with µ = 0 and σ = 1. Qualitatively, this is done by ‘stretching’ the distribution appropriately, and
translating it such that the mean of the distribution is at zero. Quantitatively, we define a parameter z as given by
equation 5.

z =

∣∣∣∣x− µσ
∣∣∣∣ (5)
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2 ATTEMPT 1

The probability distribution, then, is given by equation ??,

φ(z) =
1√
2π
e−

1
2 z

2

(6)

and the required areas are determined by integrating this expression over the appropriate range.

2 Attempt 1

We begin by assuming that a filter with a loss of 1dB in the pass-band will be acceptable, and derive the filter
parameters accordingly. We will then use Spice to perform the simulations.

2.1 Butterworth Approximation Function

We begin by determining the required value of ε using equation 2.

ε =
√

10.1Amax − 1 =
√

101/10 − 1 = .50885

The loss in the stop-band is

Amin = 10 log10

[
1 + ε2

(
ωs
ωp

)2n
]
.

Thus,

10.1Amin = 1 + ε2
(
ωs
ωp

)2

,

(
ωs
ωp

)2n

=
10.1Amin − 1

ε2
,

and

n =
log10

(
10.1Amin−1

ε2

)
log10

(
ωs
ωp

)2 = 1.7215.

Consequently, we need a second-order filter.

2.2 Second-order Butterworth filter

The normalised form of a second-order Butterworth low-pass filter is

G(s) =
1

s2 +
√

2s+ 1
.

To denormalize the function we replace s by ε1/n

ωp
. If we denote ε1/n

ωp
as A, then

G(s) =
1

A2s2 +
√

2As+ 1
,

or

G(s) =
1/A2

s2 +
√
2
A s+ 1

A2

. (7)
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2.3 Sallen-Key circuit topology 2 ATTEMPT 1

2.3 Sallen-Key circuit topology

We will implement this filter using the active RC circuit shown in Figure 3. This is known as a Sallen-Key topology.
The transfer function of the circuit — derived fully in Appendix A — is

G(s) =
k

R1R2C1C2

s2 + s
(

1−k
R2C2

+ 1
R2C1

+ 1
R1C1

)
+ 1

R1R2C1C2

. (8)

Vin
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−

+

C1

C2

r1
r2

Vo

Figure 3: Active RC filter (Sallen-Key topology)

2.4 Coefficient matching

By matching coefficients in equations 8 and 7 we can determine the component values for our active RC circuit.

A2 = R1R2C1C2

√
2

A
=

1− k
R2C2

+
1

R2C1
+

1

R1C1

Let R1 = R2 = 1kΩ. Let k = 1.
∴ A2 = (1 · 106Ω2)C1C2

√
2

A
=

1

(1kΩ)C1
+

1

(1kΩ)C1
=

2

(1 · 103Ω)C1

∴ C1 =
2

(1 · 103Ω)

A√
2

= 161nF

C2 =
A2

(1 · 106Ω2)C1
= 80.3nF

∴ R1 = 1kΩ, R2 = 1kΩ, C1 = 161nF, C2 = 80nF

2.5 Results

Table 1 shows the results. The z parameters were calculated using equation 5 and are essential for determining the
failure in each zone (Table 2).
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Figure 4: Magnitude frequency response of 2nd-order filter (attempt 1)

tolR
[%]

tolC
[%] Passband Stopband

µ σ z−1dB z0dB µ σ z
10 20 -1.020 0.653 .03009 1.5626 -18.20 1.62 1.977
10 10 -.9821 0.358 .04995 2.7421 -18.24 0.993 3.264
2 10 -.9858 0.334 .04246 2.9475 -18.30 0.718 4.592
1 10 -.9815 0.322 .05738 3.0438 -18.28 0.710 4.620
1 5 -.9788 0.160 .13285 6.1284 -18.31 0.363 9.121
1 2 -.9760 0.065 .37272 14.898 -18.29 0.152 21.664
1 1 -.9737 0.036 .72969 26.963 -18.29 0.101 32.710

Table 1: Results for 2nd-order filter

2.6 Analysis

Based on the results shown in Table 1 we can calculate the percentage failure for each set of tolerances. This is
shown in Table 2. Evidently, the failure rate is unacceptable regardless of what component tolerances are used.

The failure is due to our assumption that designing our filter with a loss of 1dB in the pass-band would be
unproblematic. In retrospect this was foolish. 1dB is the maximum acceptable loss in the pass-band. Considering
that the acceptable range of loss in the pass-band is between 0 and 1 dB, we should design the filter to have a loss
in the middle of this range — i.e. 0.5 dB. This will be our approach in our second attempt at filter design (Section
3).
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3 ATTEMPT 2

tolR [%] tolC [%] Zone 1 [%] Zone 2 [%] Zone 3 [%] Total [%]
10 20 48.8 5.9 2.4 57.1
10 10 48.1 0.3 0.1 48.5
2 10 48.3 0.2 0.0 48.5
1 10 47.7 0.0 0.0 47.7
1 5 44.8 0.0 0.0 44.8
1 2 35.5 0.0 0.0 35.5
1 1 23.3 0.0 0.0 23.3

Table 2: Failure zones for 2nd-order filter

3 Attempt 2

We learnt in our first attempt that — in order to meet the design requirements — we should set the loss in the
pass-band to approximately 0.5 dB. If Amax = 0.5, then

ε =
√

10.1Amax − 1 =
√

10.05 − 1 = .349.

To obtain the desired loss in the stop-band, we use equation 3 . If we select a stop-band loss only equal to
the requirement, certain circuit builds will fail to meet the requirements due to variations in component values.
Consequently, we will aim for a larger loss value, e.g. 20 dB. Then,

n =
log10

(
10.1(20)−1

ε2

)
log10

(
ωs
ωp

)2 = 2.42

Thus, a 3rd-order filter is needed.
The frequency response required is shown in Figure 5, and be compared with that of the second-order filter

implemented previously.
Such a filter can be obtained by simply appending a first-order RC circuit to the output of the sallen-key circuit.

The result is shown in Figure 6 .

A =
ε1/n

ωp
=

ε1/3

2π(1000Hz)
= 1.12 · 10−4

3.1 Coefficient matching

The normalised form of a third-order Butterworth low-pass filter is

G(s) =
1

(s2 + s+ 1)(s+ 1)
.

To denormalize the function we replace s with As, where — as in the case of the 2nd-order filter — A = ε1/n

ωp
. Then,

G(s) =

(
1/A2

s2 + 1
As+ 1

A2

)
·
(

1/A

s+ 1/A

)
.

Based on the transfer function of the RC circuit, it is evident that

1/A

s+ 1/A
=

1
R3C3

s+ 1
R3C3

.

∴ A = R3C3
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−40

−30

−20

−10

0

20
lo
g 1

0
|G

(j
2π

f
)|
[
d
B

]

103

f [Hz]

fp fs

Amax

Pass-band
Transition-band

Stop-band

Amin

n = 2, Amax = 1dB

n = 3, Amax = 0.5dB

Figure 5: Comparison of Butterworth filters of different order and pass-band gain

Let R3 = 1kΩ.

∴ C3 =
A

1kΩ
= 1.12 · 10−7F = 112 · 10−9F = 112nF

Also,
R1R2C1C2 = A2 (9)

and
1

A
=

1− k
R2C2

+
1

R2C1
+

1

R1C1
=

1

R2C1
+

1

R1C1
.

∴
R1 +R2

R1R2C1
(10)

If we let R1 = R2 = 1kΩ and substitute this value into equation 10, we find that

C1 = 224nF.

Substituting this value in turn in to equation 9 yields

C2 = 56.1nF.

Thus, the component values for our third-order filter are

R1 R2 R3 C1 C2 C3

1 kΩ 1 kΩ 1 kΩ 224 nF 56.1 nF 112 nF

3.2 Results

The z values in Table 3 were used to calculate the fail values shown in Table 4.
Failure in the stopband is neglibile for all resistor and capacitor tolerances.
The final circuit is shown in Figure 9.
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Figure 6: Active RC circuit implementation of a third-order filter
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Figure 7: Magnitude frequency response of 3rd-order implementation

tolR
[%]

tolC
[%] Passband Stopband

µ σ z−1dB z0dB µ σ z
10 20 -.57 .613 .7007 .9293 -26.82 1.979 5.973
10 10 -.494 .321 1.576 1.537 -26.90 1.273 9.351
2 10 -.501 .295 1.694 1.700 -26.98 .910 13.167
1 10 -.514 .295 1.647 1.742 -26.95 .892 13.399
1 5 -.492 .146 3.490 3.378 -27.01 .457 26.256
1 2 -.495 .060 8.373 8.215 -27.04 .196 61.297
1 1 -.494 .032 15.627 15.264 -27.04 .120 100.340

Table 3: Results for 3rd-order filter
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Figure 8: Failure rates in the passband area for different component tolerances

tolR [%] tolC [%] Zone 1 [%] Zone 2 [%] Zone 3 [%] Total [%]
10 20 24.2 17.7 0.0 41.9
10 10 5.7 6.2 0.0 11.9
2 10 4.5 4.5 0.0 9.0
1 10 5.0 4.1 0.0 9.1
1 5 0.0 0.0 0.0 0.0

Table 4: Failure Rates for 3rd-order Filter
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Figure 9: Final circuit
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A TRANSFER FUNCTION OF 2ND-ORDER ACTIVE RC FILTER

4 Cost Analysis

A brief cost analysis was performed — on the assumption that surface mount components would be used. It was
also assumed that the manufacturer would have discretion over which component packaging to use (0603, 0402,
0805, etc.). Ceramic capacitors were chosen.

tolR tolC Resistor unit cost
[cent]

Capacitor unit cost [cent] Total cost [euro]

1 % 5 % .7 1 .58m
1 % 2 % .7 2.5 1.06m
1 % 1 % .7 2.6 1.06m

As can be seen from the table, using capacitors of lower tolerance could significantly increase the costs of
production. Considering that 5% capacitors already meet the specification, there is no justification for using them.

The total cost is that of the passive components — i.e. excluding the operational amplifier, PCB production,
soldering, or assembly (as these were assumed to be independent of the resistor / capacitor tolerances chosen).

5 Summary

We have learnt a number of things from these attempts at filter design:

1. The filter should be designed to meet the requirements with a comfortable margin.

2. Although an ideal filter is not possible, requirements can usually be met by selecting a filter of the appropriate
order.

3. Although digital filters are increasingly used nowadays, analog filters still play important roles in many
instances.

4. Component tolerances have a significant bearing on filter performance (or, indeed, on the performance of any
electrical circuit). Their effect should be considered when planning large production runs, and Monte Carlo
analysis is an effective way of doing this.

A more comprehensive analysis would have also accounted for the characteristics of the amplifier.

A Transfer Function of 2nd-order Active RC Filter

Vin
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A
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Figure 10: Active RC filter
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A TRANSFER FUNCTION OF 2ND-ORDER ACTIVE RC FILTER

Referring to Figure 10, nodal analysis can be used to find the voltage transfer function of the circuit. We want
to find the ratio of the output voltage Vo to the input voltage Vi.

At node A, Kirchoff’s current law yields the following.

V1
R1
− Vi
R1

+ (V1 − Vo)sC1 +
V1 − V3
R2

= 0 (11)

The voltage at the two input terminals on the op-amp are effectively the same. Consequently,

V3 = V2 = Vo
r1

r1 + r2
= Vo

r1
r1 + r1(k − 1)

=
1

k
Vo.

Substituting this value for V3 back into equation 11, we have

V1
R1
− Vi
R1

+ (V1 − Vo)sC1 +
V1 − Vo

k

R2
= 0 (12)

V3 − V1
R2

+ V3sC2 = 0

Vo
k − V1
R2

+
Vo
k
sC2 = 0

Vo
kR2

+
sC2

k
Vo =

V1
R2

∴
V1
R2

= Vo

(
1

kR2
+
sC2

k

)

∴ V1 =
Vo
k

(1 + sR2C2)

Substitute into 12 .

Vo
k (1 + sR2C2)

R1
− Vi
R1

+

(
Vo
k

(1 + sR2C2)− Vo
)
sC1 +

Vo
k (1 + sR2C2)− Vo

k

R2
= 0

∴
Vo
k + Vo

k sR2C2

R1
− Vi
R1

+

(
Vo
k

+
Vo
k
sR2C2 − Vo

)
sC1 +

Vo
k sR2C2

R2
= 0

Vo
kR1

+
VosR2C2

kR1
− Vi
R1

+
VosC1

k
+
Vos

2R2C1C2

k
− VosC1 +

Vo
k
sC2 = 0

∴ Vo + VosR2C2 − kVi + VosR1C1 + Vos
2R1R2C1C2 − kVosR1C1 + VosR1C2 = 0

∴ Vo
(
1 + s(R1C1(1− k) +R1C2 +R2C2) + s2R1R2C1C2

)
= kVi

∴ G(s) =
Vo(s)

Vi(s)
=

k

s2R1R2C1C2 + s(R1C1(1− k) +R1C2 +R2C2) + 1

∴ G(s) =
k

R1R2C1C2

s2 + s
(

1−k
R2C2

+ 1
R2C1

+ 1
R1C1

)
+ 1

R1R2C1C2
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B SPICE ANALYSIS

B SPICE Analysis

Ngspice was used to perform circuit simulations. The netlisting is shown in Listing 1, and the script used to facilitate
the Monte Carlo analysis is shown in Listing 2.

A large number of simulations were performed for each pair of tolerances, in order to allow values of the mean
and deviation to settle or converge. A single-frequency AC analysis was performed on each run rather than an AC
sweep over a range of frequencies. This was purely to reduce the analysis time.

Listing 1: SPICE netlist

3rd−order low−pass f i l t e r

. i n c lude ’ opamp741 . inc ’

. param R = 1k

. param C1 = 224n

. param C2 = 56 .1 n

. param C3 = 112n

V1 in 0 dc 0 ac 1
R1 in 2 {R}
R2 2 + {R}
R3 − 0 {R}
R4 3 − . 0001
C2 + 0 {C2}
C1 2 3 {C1}
x1 + − 3 opamp741
R5 3 out {R}
C3 out 0 {C3}

. c o n t r o l
ac dec 25 500 7k
wrdata 3rd−order− f i l t e r vdb ( out )

. endc

. end

Listing 2: SPICE script

. i n c lude ’3 rd−order− f i l t e r . c i r ’

. opt ions nopage noacct

. c o n t r o l
l e t runs = 1000
l e t run = 0
l e t passband = uni tvec ( runs )
l e t stopband = uni tvec ( runs )

d e f i n e u n i f (nom, var ) (nom + nom∗var ∗ s u n i f ( 0 ) )

whi l e run < runs
a l t e r R1 = u n i f (1 e+3, . 0 1 )
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B SPICE ANALYSIS

a l t e r R2 = u n i f (1 e+3, . 0 1 )
a l t e r R3 = u n i f (1 e+3, . 0 1 )
a l t e r R5 = u n i f (1 e+3, . 0 1 )
a l t e r C1 = u n i f (224 e−9, . 0 1 )
a l t e r C2 = u n i f ( 5 6 . 1 e−9, . 0 1 )
a l t e r C3 = u n i f (112 e−9, . 0 1 )

ac l i n 1 1k 1k
pr in t vdb ( out )
l e t passband [ run ] = vdb ( out )

ac l i n 1 4k 4k
pr in t vdb ( out )
l e t stopband [ run ] = vdb ( out )

l e t run = run + 1
end

pr in t passband >r e s u l t s /3 rd−order /passband−R1−C1 . dat
p r i n t stopband >r e s u l t s /3 rd−order / stopband−R1−C1 . dat

. endc

. end
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